【数と式】因数分解の式変形について
因数分解の式変形について
問題の解説のここがわかりません。
3x^2+(y+6)x-(2y-3)(y+1)
={3x-(2y-3)}{x+(y+1)}
詳しい解説をお願いします。
進研ゼミからの回答!
こんにちは。
いただいた質問について、早速、回答します。
【質問の確認】
【問題】
次の式を因数分解せよ。
3x2+xy-2y2+6x+y+3
の
【解答解説】からの抜粋部分
3x2+(y+6)x-(2y-3)(y+1)
={3x-(2y-3)}{x+(y+1)}
の式変形についてですね。
【解説】
これは、たすきがけの手法の応用ですね。ご質問の式を見てみます。
3x2+(y+6)x-(2y-3)(y+1)
ですね。文字がx、yと2種類ありますが、xの式ととらえて、式変形していくので、xの2次式のたすきがけと同様に、考えていきましょう。ここで 部分は-(2y-3)と(y+1)の積、または、(2y-3)と-(y+1)の積ですね。x2の係数は3ですので、積が3になる組み合わせは、3と1です。
ここで、「たすきがけ」を利用して、xの係数がy+6になる組み合わせを考えてみましょう。
(y+6)は、xの係数になっていますので、この組み合わせが正解です。よって、{3x-(2y-3)}{x+(y+1)}となります。解説にも(ⅰ)に相当する式が書いてありますね。
念のため、他の組み合わせについても確認してみましょう。
(ⅱ)〜(ⅳ)では、 部が、xの係数(y+6)とは違っていますので、これらの組み合わせは正解ではありません。このように、自分で、積が-(2y-3)(y+1)となる組み合わせを探し、上記のようにたすきがけで適切な組み合わせを探してみましょう。何通りもたすきがけの図をかくのが少し手間ですが、x2の係数、xの係数、定数項(ここでは、-(2y-3)(y+1))が並びますのでわかりやすいと思います。
【アドバイス】
複数の文字を含んだ因数分解では1つの文字に注目して整理します。今回のように最後の項が文字式の積の形になる場合は、組み合わせが決まっているので、たすきがけの形にして、の係数を計算して確認すれば比較的簡単に正しい組み合わせを1個だけ決められます。最初は(ⅰ)〜(ⅳ)のように、全ての組み合わせを確認して、確実に正解を見つけ出すようにしましょう。
それではこれで回答を終わります。これからも『進研ゼミ高校講座』で確実に力をつけていってくださいね。
数学のQ&Aランキング
- 【数列】Σの和の求め方
- 【関数と極限】∞+∞=∞とは
- 【三角関数】0<θ<π/4 の角に対する三角関数での表し方
- 【指数・対数関数】1/√aを(1/a)^r の形になおす方法
- 【図形と計量】180°-θの三角比
全体のQ&Aランキング
- 【動名詞】①<make + O + C >構文の訳し方②間接疑問文における疑問詞の訳し方
- 【数列】Σの和の求め方
- 【関数と極限】∞+∞=∞とは
- 【三角関数】0<θ<π/4 の角に対する三角関数での表し方
- 【指数・対数関数】1/√aを(1/a)^r の形になおす方法
「数と式」Q&A一覧
- 【数と式】「pならばq 」が真のとき,集合Pが集合Qに含まれる理由
- 【数と式】たすきがけのやり方について
- 【数と式】たすきがけはいつ使うのか
- 【数と式】ルートの中が「負の数の2乗」のときの,ルートのはずし方
- 【数と式】因数分解のしかた
- 【数と式】因数分解の式の整理について
- 【数と式】因数分解の式変形について
- 【数と式】因数分解をするときの途中式について
- 【数と式】対称式はどんなとき使うんですか?
- 【数と式】式変形するときの文字の置き換え方
- 【数と式】必要条件・十分条件
- 【数と式】文字を含む式の書き方
- 【数と式】無理数の整数部分,小数部分の求め方
- 【数と式】絶対値と場合分け
- 【数と式】絶対値記号の意味
- 【数と式】絶対値記号を含む方程式・不等式の解き方
- 【数と式】負の値の絶対値の考え方について
- 【数と式】逆・裏・対偶の関係
- 【数と式】連立不等式の解の求め方
- 【数と式】2重根号の計算
他の教科のQ&Aを見る
【その他にも苦手なところはありませんか?】
わからないところをウヤムヤにせず、その場で徹底的につぶすことが苦手を作らないコツ。
「進研ゼミ」には、苦手をつくらない工夫があります。