【場合の数と確率】排反事象と独立試行の違い
排反事象と独立試行の違い
排反と独立の違いがよくわかりません。
独立な試行では、たしたり、かけたりするみたいですが 排反と独立の違いがわからないので、どういうときにたしたり、かけたりするのか理解できません!!
進研ゼミからの回答!
こんにちは。数学の勉強にがんばって取り組んでいますね。質問をいただいたのでお答えします。
【質問の確認】
・排反事象と独立試行の違い
・どのようなときに和・積を求めるのか
についてのご質問ですね。
【解説】
少し混同しているところがあるようですが、「排反」 というのは 『事象』 について用いる言葉で、「独立試行」 というのは 『試行』 について使う言葉なので、もともと別のものです。
<「排反事象」 について>
2つの事象 A、B があるとき、
事象 A、B が 同時に起こることがない 場合、「事象 A、B は 互いに排反である」
事象 A、B が 同時に起こることがある 場合、「事象 A、B は 互いに排反でない」 と言います。
たとえば、1組のトランプから1枚のカードを引いたとき
「ハートが出る」、「スペードが出る」 ということは同時に起きないので、これらは互いに排反ですが、 「ハートが出る」、「2のカードが出る」 ということは同時に起こることがあるので、排反な事象ではないです。
(A、Bが互いに排反事象になるときは、AまたはBとなる確率は、2つの事象の確率の和になります。)
<「独立な試行」 について>
「試行」 というのは 「ひとつの操作」 のことで、一般的には繰り返しおこなう操作を考えることが多いです。
「独立な試行」 とは、「前におこなった試行の結果が次の試行に全く影響を与えないような試行」
たとえば、「1組のトランプから1枚のカードを引く」 という 「ひとつの試行」 について
「引いたカードを元に戻して、それからまた1枚引く」 ということを繰り返すときは、
2回目にカードを引くときの状態(条件)は、1回目と全く同じなので 「独立な試行」 と言えます。
【アドバイス】
「互いに排反な事象であるときは、それぞれの確率を加えていけばよい」 ということと、「連続して試行をおこなうときは、それぞれの試行における確率を掛け合わせればよい」 ということをよく理解しておきましょう。
問題文と解答の内容をじっくりと読んで、「どういう考え方を使って答えの計算をしているか」 をつかんでいくことを繰り返して、解き方に慣れていってくださいね。
では、この調子でがんばってゼミの教材の問題に取り組み、実戦力を養っていきましょう。応援しています!
数学のQ&Aランキング
- 【数列】Σの和の求め方
- 【関数と極限】∞+∞=∞とは
- 【三角関数】0<θ<π/4 の角に対する三角関数での表し方
- 【指数・対数関数】1/√aを(1/a)^r の形になおす方法
- 【図形と計量】180°-θの三角比
全体のQ&Aランキング
- 【動名詞】①<make + O + C >構文の訳し方②間接疑問文における疑問詞の訳し方
- 【数列】Σの和の求め方
- 【関数と極限】∞+∞=∞とは
- 【三角関数】0<θ<π/4 の角に対する三角関数での表し方
- 【指数・対数関数】1/√aを(1/a)^r の形になおす方法
「場合の数と確率」Q&A一覧
- 【場合の数と確率】A∩B全体に ̄がつく集合
- 【場合の数と確率】A ̄∪Bの図
- 【場合の数と確率】∪と∩の違い
- 【場合の数と確率】「どちらか一方」と「少なくとも一方」
- 【場合の数と確率】「同様に確からしい」の意味
- 【場合の数と確率】「条件つき確率」と「確率の乗法定理」の関係
- 【場合の数と確率】余事象を使った解き方
- 【場合の数と確率】倍数の個数の求め方
- 【場合の数と確率】区別がない組分け
- 【場合の数と確率】和の法則と積の法則の使い分け
- 【場合の数と確率】和の法則と積の法則の使い分けについて
- 【場合の数と確率】和の法則と積の法則の使い分けの仕方
- 【場合の数と確率】問題文の意味の取り方について
- 【場合の数と確率】排反事象と独立試行の違い
- 【場合の数と確率】組分けの問題の見分け方
- 【場合の数と確率】順列と組合せの見分け方
他の教科のQ&Aを見る
【その他にも苦手なところはありませんか?】
わからないところをウヤムヤにせず、その場で徹底的につぶすことが苦手を作らないコツ。
「進研ゼミ」には、苦手をつくらない工夫があります。